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Abstract—Multi-task learning aims at learning multiple related
but different tasks. In general, there are two ways for multi-
task learning. One is to exploit the small set of labeled data
from all tasks to learn a shared feature space for knowledge
sharing. In this way, the focus is on the labeled training samples
while the large amount of unlabeled data is not sufficiently
considered. Another way has a focus on how to share model
parameters among multiple tasks based on the original features
space. Here, the question is whether it is possible to combine the
advantages of both approaches and develop a method, which can
simultaneously learn a shared subspace for multiple tasks and
learn the prediction models in this subspace? To this end, in this
paper, we propose a feature representation learning framework,
which has the ability in combining the autoencoders, an effective
way to learn good representation by using large amount of
unlabeled data, and model parameter regularization methods into
a unified model for multi-task learning. Specifically, all the tasks
share the same encoding and decoding weights to find their latent
feature representations, based on which a regularized multi-task
softmax regression method is used to find a distinct prediction
model for each task. Also, some commonalities are considered
in the prediction models according to the relatedness of multiple
tasks. There are several advantages of the proposed model: 1) it
can make full use of large amount of unlabeled data from all the
tasks to learn satisfying representations; 2) the learning of distinct
prediction models can benefit from the success of autoencoder;
3) since we incorporate the labeled information into the softmax
regression method, so the learning of feature representation is
indeed in a semi-supervised manner. Therefore, our model is a
semi-supervised autoencoder for multi-task learning (SAML for
short). Finally, extensive experiments on three real-world data
sets demonstrate the effectiveness of the proposed framework.
Moreover, the feature representation obtained in this model can
be used by other methods to obtain improved results.

I. INTRODUCTION

In many practical situations, people need to solve a number
of related tasks, and multi-task learning (MTL) [5]–[7], [15]
is a good choice for these problems. It learns multiple related
tasks together so as to improve the performance of each task
relative to learning them separately. For example, webpage
classification for webpages from Yahoo1 and Open Directory
Project2 are two related text classification tasks. MTL methods
can share knowledge among them to help learn better classi-
fiers for each task. For face recognition problem, there are face
image databases collected by different organizations and under

1http://www.yahoo.com/
2http://www.dmoz.org/

different environmental conditions or have different poses.
When each organization only have limited labeled data, it is
desirable to utilize all databases to improve the generalization
performance. Generally, there are two types of MTL methods.
One kind is using the supervised information from all the
tasks to help tasks do feature selection collectively or learn
a shared feature space for knowledge sharing. The other type
of methods focus on how to share model parameters among
multiple tasks based on the original features.

Many works studied how to learn shared features among
multiple tasks. The earliest MTL method [5] learns a shared
hidden layer representation for different tasks, in which all
the tasks share the same weights between the input layer and
hidden layer, while having different weights between hidden
layer and output layer. Multi-task feature learning learns a
low-dimensional representation which is shared across a set
of related tasks [2], [11]. The methods to learn predictive
structures on hypothesis spaces from multiple learning tasks
are also proposed in [1], [6]. These methods can learn some
shared features or shared structures between different tasks,
to facilitate information sharing among tasks. However, the
above methods only use the supervised information from all
the tasks to learn the features, while ignoring large amount
of unlabeled data, which may also contain plenty of useful
information.

The other type of methods to share knowledge among
multiple tasks are by taking advantage of the commonness
of the prediction model parameters. Supposing that all the
tasks are similar, a regularization formulation is proposed for
MTL [8] to make the model parameters of these tasks be
similar. MTL can be modeled by stochastic process methods,
such as [15], [19]. In this way, the correlation between multiple
tasks’ model parameters can be represented and learned. To
deal with outlier tasks, a robust multi-task learning algorithm
is proposed [7], which can utilize the similarity among similar
tasks’ models while reducing the harmful effects of outlier
tasks. These methods share knowledge by placing a common
prior on the model parameters of each task in hierarchical
Bayesian models and explicitly share some model parameters
or model structure among tasks. Most of these methods share
model parameters in the original feature space. In this work,
we focus on the parameter sharing in the learnt subspace by
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semi-supervised autoencoders.
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Fig. 1: The framework of SAML.
In fact, both feature representation learning and model

parameter sharing are helpful for multi-task learning. Au-
toencoder has been proven to be an effective way to learn
subspace only using the unlabeled data. In this work, we
aim at discovering a new feature representation for multi-
task learning by autoencoder, which is promoted by the model
parameter sharing of regularization method. To this end, we
combine autoencoder and multi-task softmax regression into a
unified model. The proposed Semi-supervised Autoencoder for
Multi-task Learning (SAML) is shown in Fig. 1. In Fig. 1, the
encoding weights are shared by all tasks to map the data into
common compressed expression, and for labeled and unlabeled
data, their corresponding new representations are ξlt and ξut ,
respectively. With ξlt in each task, a regularized multi-task
softmax regression method is used to train a separate model for
each task. The softmax regression model includes two parts,
one is θ0, which is shared by multiple tasks and the other is
a task specific part θt for each task t. The overall framework
includes two parts, i.e., autoencoder and regularized softmax
regression, and these two parts are optimized at the same
time. The proposed framework not only minimizes the re-
construction error, but also aims at reducing the classification
error of the softmax regression on the encoding output. This
framework can do semi-supervised learning with only a small
number of labeled data and plenty of unlabeled ones. It has
several advantages. First, it can use autoencoder to discover the
intrinsic knowledge of the training samples in the raw feature
representation. Second, the small number of labeled training
samples can also help autoencoder to learn the latent feature
representation. Third, based on the regularization method,
multiple tasks can share knowledge by model parameters in the
learning process. Finally, the feature transformation process
is nonlinear, i.e., the transformation from the input layer to
hidden layer is nonlinear in autoencoder, which enhances the
learning ability of the proposed framework.

II. PRELIMINARY KNOWLEDGE

A. Autoencoder

The basic framework of autoencoder [3] is a neural network,
which comprises an input layer, an output layer and at least one
hidden layer. The aim of an autoencoder is to transform inputs

into outputs with the least possible amount of deviation. So it
is usually used as an information compressor and it contains
the encoding and decoding processes. An single hidden layer
autoencoder can be described by Fig. 2. As we can see, the
input is encoded into a lower-dimension representation, then
decoded into an output with the same size of input. Usually,

x̂

x

x
encoding

decoding

Fig. 2: Single hidden layer autoencoder.

f1 and f2 are nonlinear activation functions (sigmoid function
is adopted in this paper). This process can be summarized as
follows.

Given input xi ∈ R
m×1, weight matrix W1 ∈ R

k×m, W2 ∈
R

m×k, and bias vector b1 ∈ R
k×1, b2 ∈ R

m×1,

ξi = f(W1xi + b1), x̂i = f(W2ξi + b2). (1)

As the objective of autoencoder is to enforce the output x̂i

as close as possible to the input xi, we try to minimize the
distance of the input and output. The goal of autoencoder is
to minimize the reconstruction error using Euclidean distance,

min
W1,b1,W2,b2

Jr =

n∑

i=1

||x̂i − xi||2. (2)

B. Softmax Regression

Softmax regression [9] is a generalization of logistic re-
gression, which can handle multi-class classification problems,
and the class label y ∈ {1, 2, ..., c}, where c ≥ 2 is the
number of classes. Given a test input xi, softmax regression
can estimate the probability that p(yi = j|xi) for each value
of j = 1, · · · , c,

p(yi = j|xi; θ) =
eθ

�
j xi

∑c
l=1 e

θ�
l xi

(3)

where θ = {θ1, · · · , θc} are the parameters of the model. The
term

∑c
l=1 e

θ�
l xi normalizes the distribution to guarantee the

probability condition. In the special case where c = 2, the
softmax regression reduces to logistic regression.

Given the training set {xi, yi}ni=1, yi ∈ {1, 2, ..., c}, the
solution of softmax regression can be derived by minimizing
the following optimization problem,

min
θ1,···,θc

(− 1

n

n∑

i=1

c∑

j=1

1{yi = j} log eθ
�
j xi

∑c
l=1 e

θ�
l xi

), (4)

where 1{·} is the indicator function, which equals to 1 only
when the value of the statement is true, otherwise 0. After
training the model, the probability of a new instance xi

belonging to label j can be computed via Eq.(5), then xi

is labeled to the class which has the biggest conditional
probability,

yi = argmax
j

eθ
�
j xi

∑c
l=1 e

θ�
l xi

. (5)
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C. Regularized Multi-Task Learning

Regularized multi-task learning [8] is a framework based on
the minimization of regularization functions. It learns all tasks
simultaneously, and gets the common sub-model shared by all
tasks and specific sub-models owned by each task privately.

For the sake of brevity, we assume that the function �t is
the hyperplane for the t-th task, that is �t(xti) = w�

t xti,
where xti ∈ R

k×1. As the tasks are related, for every task
t ∈ {1, ..., T}, wt can be written by wt = w0+vt. The vector
w0 represents the common model parameter of all tasks, and
the vectors vt are different between tasks. When the tasks are
similar to each other, vt are “small”. It means that all models
wt are close to some model w0. On the other hand, when
w0 is extremely small, all models wt are unrelated, then the
framework is equal to training each task separately. Using L2-
norm on each component of wt, we can get the framework
as,

min
w0,vt,εt

J(w0,vt, εt) =

T∑

t=1

εt +
λ1

T

T∑

t=1

||vt||2 + λ2||w0||2,
(6)

where

εt = �(w�
t xt), xt = [xt1,xt2, . . . ,xtn]. (7)

In Eq. (6), λ1 and λ2 are positive regularization parameters,
and the loss εt measures the error that each final model wt

makes on all training data. Intuitively, if λ1 is much larger
than λ2, it will result to making the models of all tasks to be
the same model w0. If λ2 is much larger than λ1, it will result
to making all tasks unrelated, which equals to training each
task separately. To simplify the model, we choose L2-norm
regularization in this work.
III. REPRESENTATION LEARNING VIA SEMI-SUPERVISED

AUTOENCODER FOR MULTI-TASK LEARNING

In this section, we first formalize the proposed framework,
then describe the derivation of the solution in detail.
A. Framework Formalization

Given T task data sets with both labeled and unlabeled
data, i.e., Dt = {xti, yti}ntl

i=1 + {xti}ntu

i=1 (1 ≤ t ≤ T ), with
xti ∈ R

m×1, yti ∈ {1, 2, ..., c}, where ntl is the number of
labeled data in task t and ntu is the corresponding number of
unlabeled data. Actually, our framework is semi-supervised,
which can effectively employ the small set of labeled data
to facilitate the common knowledge sharing between tasks via
the regularized multi-task framework, and use the autoencoder
to find good representations.

As shown in Fig. 1, our proposed framework contains two
components mainly. The first component is the autoencoder,
which projects the input x into lower dimension ξ. The second
component is the softmax regression, which learns the model
with ξ as its input. The proposed learning framework for multi-
task learning can be formalized as follows,

J =

T∑

t=1

Jr(xt, x̂t) + α

T∑

t=1

L(ξt, θt) + Ωr +Ωl. (8)

The first term Jr(xt, x̂t) is the reconstruction error for both
labeled and unlabeled data of task t where x̂t ∈ R

m×nt , which
can be defined as follows,

Jr(xt, x̂t) =

nt∑

i=1

|x̂ti − xti|2, (9)

where

nt = ntl + ntu, ξti = f(W1xti + b1), x̂ti = f(W2ξti + b2).
(10)

In this term, all the tasks share the same encoding and
decoding weights, i.e., W1, b1, W2 and b2. The hidden layer
has k nodes (k ≤ m), and the weight matrixes W1 ∈ R

k×m

and b1 ∈ R
k×1 connect the input layer and the hidden layer,

while W2 ∈ R
m×k and b2 ∈ R

m×1 connect the hidden layer
and the output. We try to minimize the reconstruction error of
each instance, to ensure that the hidden layer output contains
the same information as the input data. Since the tasks are
related, we believe the collaborative autoencoders among all
tasks can lead to better feature representations.

The second term L(ξt, θt) is the optimization problem of
softmax regression, in which we try to incorporate the labeled
data of all tasks. The minimization of objective function is
formalized as,

L(ξt, θt) = − 1

ntl

ntl∑

i=1

c∑

j=1

1{yti = j} log eθ̂
�
tjξti

∑c
p=1 e

θ̂�
tpξti

,

(11)
where θ̂tj = θtj+θ0j. In this term, the input data ξti ∈ R

k×1

is the output of the antoencoder hidden layer. The weight
vectors θtj ∈ R

k×1 and θ0j ∈ R
k×1 (j ∈ {1, ..., c}) are

respectively the specific model parameters for each task and
common model parameters shared by all tasks. To control
the importance of θtj and θ0j , we can add the L2-norm
regularization into the multi-task framework as

Ωl =
λ1

T

T∑

t=1

c∑

j=1

||θtj ||2 + λ2

c∑

j=1

||θ0j ||2, (12)

where λ1 and λ2 are the trade-off parameters. Large value of
λ1 will lead to all tasks sharing the same model, while large
value of λ2 will result in the separate training of each task.

Also, to control the complexity of the autoencoder model
and to improve its generalization ability, we add a weight
decay term Ωr in Eq. (8), which can be written as follows,

Ωr = λ3(||W1||2 + ||b1||2 + ||W2||2 + ||b2||2), (13)

where λ3 is trade-off parameter with small positive value for
the whole framework.

B. Solution of the Proposed Framework

The optimization problem of our proposed framework is
to minimize J (seen in Eq.(8)) as a function of W1, b1,
W2, b2, θtj and θ0j (j ∈ {1, ..., c}). Obviously, it is an
unconstrained optimization problem. To solve this problem,
we adopt the gradient descent method to derive it. Due to the
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space limitation, we only give the partial derivatives of θtj

and θ0j (j ∈ {1, ..., c}) in the following,

∂J

∂θtj
=α(− 1

ntl

ntl∑

i=1

c∑

j=1

1{yti = j}(1− eθ̂
�
tjξti

∑c
l=1 e

θ̂�
tlξti

)ξti))

+
2λ1

T
θtj ,

(14)
∂J

∂θ0j
=α

T∑

t=1

(− 1

ntl

ntl∑

i=1

c∑

j=1

1{yti = j}(1− eθ̂
�
tjξti

∑c
l=1 e

θ̂�
tlξti

)ξti))

+ 2λ2θ0j .
(15)

Based on the partial derivatives, we develop an alternately op-
timization algorithm to derive the solutions with the following
rules,

W1 ←W1 − η
∂J
∂W1

, b1 ← b1 − η
∂J
∂b1

,

W2 ←W2 − η
∂J
∂W2

, b2 ← b2 − η
∂J
∂b2

,

θtj ← θtj − η
∂J
∂θtj

, θ0j ← θ0j − η
∂J
∂θ0j

,

(16)

where η is the step length, which determines the speed of
convergence.

Though the objective of the whole framework is not convex,
we can obtain relatively good results through appropriate
initiation of the variables. The experimental results also val-
idate the effectiveness of the proposed solution. Specifically,
we use Stacked AutoEncoder [4] to get the initial value of
W1, b1, W2 and b2, and we can get the output ξ of the
hidden layer. Then Bayesian Multinomial Regression (BMR
for short) [12] is adopted to obtain the initial value of θtj and
θ0j (j ∈ {1, ..., c}) with ξ as its input. That is, θtj is the
weight of the single task BMR model and θ0j is the average
of all θtj .
C. Classifier Construction

After all parameters are learned, there are two ways to
construct classifiers for all tasks. The first way is to use the
softmax regression to predict the unlabeled data directly as
described in Eq. (5) by the proposed framework. That is, for
each instance, we can estimate the probability P (yti = j|xti),
and then assign the class label with the maximum probability.
The second way is to apply standard classification algorithms,
e.g., logistic regression (LR) [9] [16] to train a classifier for
each task independently in the compressed low-dimensional s-
pace. These two methods are denoted as SAML1 and SAML2,
respectively.

IV. EXPERIMENTAL EVALUATION
A. Data sets and Preprocessing

The first two data sets are for binary classification, and the
third one is for multi-class classification.

Corel Data Set3 includes two different top categories, flow-
er and traffic, which is used for transfer learning [22]. Each top

3http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features.

category further consists of four subcategories. We use flower
and traffic as positive and negative instances, respectively. To
construct the multi-task learning classification problems, we
randomly select one subcategory from flower and one from
traffic to form a task. In this way, we can get four tasks with no
repeat. Totally 24 (P 4

4 ) 4-task learning classification problems
can be constructed from this data set. In each task, several
instances are randomly selected to construct the labeled data
set, and the rest are used for the unlabeled one.

ImageNet Data Set4 contains five categories, i.e., ambu-
lance, taxi, jeep, minivan and scooter, in which scooter is a
big category. To construct the multi-task learning classification
problems that all tasks are related, we randomly divide scooter
into four subcategories. Then we regard scooter as negative
and the other categories as positive. Similar with Corel data
set, we can also construct 24 (P 4

4 ) 4-task learning classification
problems.

Leaves Data Set [13] includes 100 plant species that are
divided into 32 different genera, and each species has 16
instances. We choose three genera with more than four plant
species to construct 4-task 3-class classification problems, and
use 64 margin descriptor features to represent an instance.
Similar with the construction method of the above two data
sets, we can construct 576 (P 4

4 ·P 4
4 ) 4-task 3-class classification

problems.

B. Compared Algorithms

We compare our multi-task learning algorithm SAML with
the following baseline algorithms,

• The single task supervised classification algorithm
Bayesian Multinomial Regression (BMR) [12];

• Robust Multi-Task Feature Learning (rMTFL) [10],
which simultaneously captures a common set of features
among relevant tasks and identifies outlier tasks;

• Robust Multi-Task Learning (RMTL) [7], which captures
the task relationships using a low-rank structure, and
simultaneously identifies the outlier tasks using a group-
sparse structure;

• Clustered Multi-Task Learning (CMTL) [20], which cap-
tures structures by minimizing sum-of-square error (SSE)
in K-means clustering.

Since our proposed model can find new feature representa-
tion in multi-task problems, so based on which BMR is used
to train classifiers for each task, denoted as SAML2.

C. Implementation Details

We adopt the MALSAR package [21] for the implemen-
tation of our compared algorithms, i.e. rMTFL, RMTL and
CMTL. Besides, we adopt BMR5 as baseline, which is a robust
algorithm based on Bayesian framework. Also, we use BMR
for the initiation of the model parameters in our framework.
In addition, BMR is used to build the single task classification
model in SAML2. We use Stacked AutoEncoders to initiate
the encoding and decoding weights of our framework.

4http://www.image-net.org/download-features
5http://www.bayesianregression.com/bmr.html
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After some preliminary experiments, we set λ1 = 0.0001,
λ2 = 0.0001, λ3 = 0.0001 for all three data sets, and
α = 0.005 for Coral and ImageNet data sets, and α = 0.002
for Leaves data set. As the three data sets have different
feature dimension originally, we set different values of k
for each of them. We set k = 30 for Coral data set, set
k = 80 for ImageNet data set and set k = 10 for Leaves
data set. For the baselines, which can not handle multi-class
classification problems, we adapt the compared multi-task
baselines to handling multi-class problems via one-versus-all.
The evaluation metric is the averaged prediction accuracy over
all tasks.

TABLE I: Comparisons among BMR, RMTL, rMTFL, CMTL,
and SAML on Coral, ImageNet and Leaves data sets

2 4 6 8 10 Avg

Corel

BMR 74.8 82.3 85.5 88.9 90.2 84.3
RMTL 75.4 83.3 86.6 90.0 90.8 85.2
rMTFL 75.4 83.3 86.6 90.0 90.9 85.2
CMTL 74.6 80.2 84.9 88.5 89.3 83.5
SAML1 82.4 88.4 91.8 92.7 93.6 89.8
SAML2 81.5 88.1 91.2 92.5 93.9 89.4

2 4 8 16 32 Avg

ImageNet

BMR 62.4 65.8 71.6 77.8 84.1 72.3
RMTL 62.9 65.8 72.4 78.1 84.4 72.7
rMTFL 62.9 65.8 72.4 78.1 84.4 72.7
CMTL 63.6 65.8 73.3 78.8 85.6 73.4
SAML1 64.5 69.9 76.1 83.3 89.8 76.7
SAML2 61.7 66.6 72.9 82.6 89.4 74.6

3 6 9 12 15 Avg

Leaves

BMR 79.9 88.9 91.9 93.7 92.7 89.4
RMTL 80.6 89.3 91.6 92.8 92.3 89.3
rMTFL 80.6 89.3 91.6 92.8 92.3 89.3
CMTL 79.7 89.4 90.8 92.1 92.1 88.8
SAML1 83.3 95.2 95.3 96.1 94.8 92.9
SAML2 83.5 92.0 94.3 96.1 92.7 91.7
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Fig. 3: Comparisons among BMR, RMTL, rMTFL, CMTL,
and SAML on Coral Data Set
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Fig. 4: Comparisons among BMR, RMTL, rMTFL, CMTL,
and SAML on ImageNet Data Set

D. Experimental Results

1) Comparison Results on Coral and ImageNet Data Sets:
We first evaluate all the algorithms on the Coral and ImageNet
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Fig. 5: Comparisons among BMR, RMTL, rMTFL, CMTL,
and SAML on Leaves Data Set

data sets for binary classification. For both data sets, there
are 24 constructed multi-task problems. Actually, the multi-
task learning setting is a semi-supervised style, so we sample
a small subset of data as labeled samples for each problem.
Specifically, the numbers of labeled samples are 1, 2, 3, 4
and 5 for each class on Coral data set, and which are 1, 2,
4, 8 and 16 on ImageNet data set. We conduct 3 independent
trials for each number of sampled labeled data, and then the
average results are recorded. For the sake of succinctness, the
detailed results of two labeled data sizes (i.e., 4, 8.) are shown
in Fig. 3 and Fig. 4. In these figures, x-axis is the problem
instance which demonstrates the 24 classification problems,
and y-axis is the corresponding accuracy. From these results,
we have the following insightful observations,

• As a single task algorithm, BMR can also get a relatively
comparable performance with the baseline multi-task
learning algorithms, which indicates the effectiveness of
Bayesian Multinomial Regression. This inspires us to use
it for the initialization of θ0j and θtj (1 ≤ t ≤ T ).

• The output of the proposed framework SAML1 is sig-
nificantly better than all the compared baselines, which
demonstrates the effectiveness of considering both fea-
ture representation learning by autoencoder and model
parameter sharing between multiple tasks simultaneously.
Furthermore, SAML1 performs much stable than all the
baselines.

• In most cases, SAML2 also outperforms the compared
baselines, which shown that the feature representation
obtained in our model can be used by other supervised
algorithms to obtain improved performance.

• With the increasing number of labeled samples, all the
algorithms obtain better results. It is worth mentioning
that SAML1 not only achieves the best results but also
performs well when there are only few labeled samples.
This further validates the superiority of our model over
the baselines, since in real-world applications the labeled
data are always not easy to obtain.

In Table I, we also report the average results over 24
problems of each data set for all algorithms under different
numbers of labeled samples. From these results in Table I,
SAML1 also performs the best, which again validate the
effectiveness of the proposed framework.

2) Comparison Results on Leaves Sets: To validate our
framework can also directly deal with multi-task learning with
multi-class problems, we evaluate all algorithms on the Leaves
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data set. The numbers of sampled labeled samples are 3, 6,
9, 12 and 15, i.e., 1, 2, 3, 4 and 5 samples from each class,
respectively. To clearly show the results, we randomly select
30 problems and their detailed results of two labeled data sizes
(i.e., 6, 12.) are shown in Fig. 5. The average results over 576
problems are shown in Table I. We can obtain the similar
observations as the Coral and ImageNet Data Sets from these
results. Our model SAML1 again achieves the best results,
and SAML2 can obtain improved results based on the output
feature representation of our framework.

V. RELATED WORKS

Multi-task learning (MTL) conducts multiple related learn-
ing tasks simultaneously so that the useful information in one
task can be used for other tasks. The earliest MTL method
is based on neural networks, it let the neural networks for
multiple tasks share the hidden layer, which means that all
the tasks use the same hidden layer feature representation
to learn their distinct classifiers [5]. There are also other
methods to learn a low-dimensional representation which is
shared across a set of multiple related tasks [2], [11]. These
methods can learn some shared features between different
tasks, which is used to facilitate information sharing among
tasks. However, most algorithms are supervised methods and
cannot take advantage of unlabeled data.

Since the multiple tasks are related, regularization method
can be used to make the model parameters be similar [8].
The correlations between the model parameters of multiple
tasks can be formulated in stochastic process models [15],
[19]. In this way, the correlations can be learned and help the
knowledge sharing among multiple tasks. To deal with outlier
tasks, a robust multi-task learning algorithm is proposed [7].
It allows the prediction models of outlier tasks to be different
from other tasks. These methods share knowledge by placing
a common prior on the model parameters of each task in
hierarchical Bayesian models and explicitly share some model
parameters or model structure among tasks. But most of them
share model parameters in the original feature space. In this
paper, we try to share the model parameter based on the new
feature representation.

Poultney et al. [14] described a novel unsupervised method
with an energy-based Model for learning sparse, over com-
plete features. In their model, the decoder produces accurate
reconstructions of the patches, while the encoder provides a
fast prediction of the code without the need for any particular
preprocessing of the inputs. Denoising autoencoders [17] is
to learn a more robust representation from an artificially
corrupted input, and further Stacked denoising autoencoder-
s [18] tries to learn useful representations through a deep
network. However, these methods have not considered the
label information and they are not designed for multi-task
learning.

VI. CONCLUSION

In this paper, we propose a novel semi-supervised feature
learning framework with few labeled data in each task for
multi-task learning. In this framework, the well known rep-
resentation learning model autoencoder is considered, and we

propose a generalized logistic regression to incorporate the
labeled information to supervise it. The proposed framework
simultaneously learns the new feature representation and min-
imizes the prediction error on the labeled data. Moreover, the
knowledge is shared among multiple tasks in two aspects, one
is all tasks sharing the same encoding and decoding weights,
and the other one is that they share the model parameter based
on the latent feature space. Extensive experiments on three
real-world image data sets demonstrate the effectiveness of
the proposed framework.
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